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What are the data?
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Simulation and Inference

Joint density of “everything”:

p(d,s,�) = p(d | s)p(s |�)p(�)

Data Underlying “truth” Model parameters

Simulation:  Condition on the model

p(d,s |�) = p(d | s) p(s |�)

Inference:  Condition on the data

Factors in joint density given CMB data:

�2log p(d | s) � (d� � A� s)N�

�1(d� � A� s) = � 2

�2log p(s |�) = sC�1(�)s + logC(�)

p(�) =

p(�,s | d)� p(d | s) p(s |�) p(�)

Prior on parameters
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Bayesian CMB Analysis - Can we Beat O(N^3)??
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Mapping the Posterior with Metropolis-Hastings MCMC

For any “proposal” matrix, the

accept probability determined by

the condition of detailed balance:

� (x)w(y | x)A(y | x) = A(x | y)w(x | y)� (y)

Algorithm:

1) Propose new state, conditional on the past 

2) Accept with probability 0< A <= 1

3) Continue

Maximal Accept Probability:

A(y | x) = min 1,
� (y)w(x | y)

� (x)w(y | x)

� 

� 
� 

� 

� 
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Special Case of MH MCMC: The Gibbs sampler

Gibbs Sampling for CMB:

-Sequentially propose variations
  from conditional densities…
-Accept probability is unity!!

s(i+1)
� p(s | Cl

(i),d)

Cl
(i+1)

� p(Cl | s(i+1),d) = p(Cl | s(i+1))

Method originally presented in:
• Jewell, et al., ApJ, 609,1,2004
• Wandelt et al., Phys. Rev. D., 70,083511,2004
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Sampling the CMB given the Power Spectrum and Data
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CMB Gibbs Sampler

p(� | s)� p(�)
e�� l 2Cl (� )

2�Cl
1/ 2(�)lm

�

p(� | s) p(s | d, � � )

Mean Field map given power spectrum guess

Random variation consistent with our uncertainty

Sum of the two maps is a sample from the conditional

Iterate with:
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Validation and Applications
• Validation for temperature and polarization:

– Power Spectrum Estimation from High-Resolution Maps
by Gibbs Sampling, Eriksen et al., ApJS, 155, 227, 2004

– Estimation of Polarized Power Spectra by Gibbs
Sampling, Larson et al., ApJ, 656, 653, 2007

• Extension of method to include foregrounds
(temperature data):

– Joint Bayesian Component Separation and CMB Power
Spectrum Estimation, Eriksen et al., accepted to ApJ,
arXiv 0709.1058

• Applications to WMAP data:
– Bayesian Power Spectrum Analysis of the First-Year

Wilkinson Microwave Anisotropy Probe Data, O’Dwyer
et al., ApJL, 617, 99, 2004

– A Reanalysis of the 3 Year Wilkinson Anisotropy Probe
Temperature Power Spectrum and Likelihood, Eriksen
et al., ApJ, 656, 641, 2007

– Bayesian Analysis of the Low-Resolution Polarized 3
Year WMAP Sky Maps, Eriksen et al., ApJL, 665, 1,
2007

• Joint CMB and Foreground analysis of
WMAP 3 yr. data:

– Temperature only - see Clive Dickinson’s talk, as well
as Eriksen et al., ApJL, in press, arXiv 0709.1037

– Temp. and Polarizaton - see H.K.K. Eriksen’s talk

• From Gibbs samples to cosmological
parameters

– Chu et al., 2005, Phys. Rev. D., 71, 103002
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Comparison of Computational Expense

O[N 3 ]

� log
p(� | d)

p(�)
= ˆ s (d)[C(�) + N]�1 ˆ s (d) + log C(�) + N

Computational Expense:

p(� | d)�� d � � � ds p(� | s,d) p(s | � � ,d)�[ ] p0( � � | d)

Direct evaluation:

Gibbs Sampling: KO[N 3 / 2]Computational Expense:

Map-making is the computational bottleneck (scales with expense of mutliplication by N^-1)

Some specific benchmark numbers:
1)  Including foregrounds (T only, 5 frequencies = # processors),
     Nside=64, takes 50 sec/ sample/ freq., or 5000 samples in 350 CPU hours
2)  Polarization, Nside=16, dense noise matrix, 2 sec/ sample, or
      10^5 samples in 60 CPU hours
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Low Signal to Noise, High-L Mixing Properties of
Gibbs Sampling

• We want independent samples from joint posterior at all scales
• Gibbs sampling p(C_l | s) at high-L (low S/N) very narrowly
  peaked (cosmic variance - instead of cosmic AND noise variance)
• Attempting to propose large C_L changes in MCMC, independent
  of past typically lead to ratio’s of matrix determinants which are too
  expensive to compute…
• Motivates a search for a scheme in which large changes in spectrum
  can be made with deterministic changes to the CMB map!
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Example - Rescale Harmonic Coefficients

s(2)
= F(Cl

(2),Cl
(1),s(1)) = (C(2))1/ 2(C(1))�1/ 2 s(1)

�F

�s(2)

�1

=
C(2)

C(1)

1/ 2

Cancels ratio of determinants in posterior!!

Furthermore - signal “norm” invariant: s(1)(C(1))�1s(1)
= s(2)(C(2))�1s(2)

“Forward” proposal for CMB map:

“Backward” proposal for CMB map:

Jacobian Factor to be included in Accept Probability:

s(1)
= F �1(Cl

(2),Cl
(1),s(2)) = (C(1))1/ 2(C(2))�1/ 2 s(2)

A(Cl
(2),s(2) | Cl

(1),s(1)) = min 1,
e�(d�s( 2) )N �1 (d�s( 2) )

e�(d�s(1) )N �1 (d�s(1) )

� 

� 
� 

� 

� 
 

w(Cl
(1) | s(2),Cl

(2),d)

w(Cl
(2) | s(1),Cl

(1),d)

� 

� 

� 
� 

� 

	 

� 
� 

1. A(1-> 2) depends on change in chi^2!
2. So make large changes to C_L in low S/N regime:
       where standard Gibbs sampling has bad mixing properties!!
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New Hybrid MCMC and
Gibbs Sampling (L=220
Marginal shown…)

Comparison of Hybrid MCMC+Gibbs to Standard Gibbs

Hybrid MCMC + Gibbs Sampling: Left) Comparison of Gibbs and Gibbs+MCMC power vs. iteration,
Right) Comparison for TE and EE power at L=23
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Summary

• Gibbs Sampling has now been validated as an efficient, statistically exact, and practically
useful method for “low-L” (as demonstrated on WMAP temperature polarization data)

• We are extending Gibbs sampling to directly propagate uncertainties in both foreground
and instrument models to total uncertainty in cosmological parameters for the entire
range of angular scales relevant for Planck

• Made possible by inclusion of foreground model parameters in Gibbs sampling and
hybrid MCMC and Gibbs sampling for the low signal to noise (high-L) regime

• Future items to be included in the Bayesian framework include:
1. Integration with Hybrid Likelihood (or posterior) code for cosmological parameters

2. Include other uncertainties in instrumental systematics? (I.e. beam uncertainties, noise estimation, calibration
errors, other)


